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Method name: Electricity is essential in modern life, with consumption expected to rise by 80 % by 2024, making
Knowledge Growing System, Backpropagation power transformers crucial. In developing countries, monitoring old-transformer power plants
Neural Networks is often manually and infrequently, increasing damage and reducing transformer life. The lack
of data limits the accuracy of machine learning, making traditional approaches less effective.

I;:{r;rri?agaﬁon neural networks This article introduces a new perspective through Cognitive Artificial Intelligence (CAI) with the
Cognitive artificial intelligence (CAI) Knowledge Growing System (KGS), which builds knowledge from scratch. KGS can detect and
Knowledge growing system (KGS) continuously learn about transformer degradation, improving predictive accuracy. This study
Remaining useful life (RUL) demonstrates KGS’s ability to estimate transformer life while comparing its predictions with the
Power transformer Backpropagation Neural Network (BPNN) method. Enhancing decision-making in strategic plan-

ning ensures a reliable power supply and better transformer performance. It also supports the
implementation of more intelligent and reliable preventive maintenance strategies.
The method is as follows:

» The KGS method demonstrates that the transformer is in satisfactory condition, with an esti-
mated health level of 87.5 % in Semester 2 and 75 % in Semester 1.

+ The BPNN method estimates the transformer’s RUL at 23.42 years, achieving the RUL of 20.55
years or 7500 days with a normal loss of life of 0.0133 % per day.
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Background

For analyzing the transformer RUL, it is essential to determine accurate predictions using reliable methods. This research uses
a new intelligent method based on Cognitive Artificial Intelligence (CAI), called Knowledge Growing System (KGS), to predict the
transformer RUL. KGS can handle a small amount of data, apprehending that the data for predicting the transformer RUL is not
easy to acquire or is very limited. KGS is a CAI method built upon how knowledge is generated within the human brain with the
cognitive psychology approach. The results show that KGS successfully delivers a good prediction on the transformer RUL, showing
the prospective use of KGS as a helper in predicting the useful life of electrical equipment.

On the other hand, it would be beneficial to have a comparative method, which can also support the prediction results of KGS.
In this case, we selected a machine learning method called backpropagation neural networks (BPNN) to gain more insights into
the two methods. The KGS method facilitates the determination of the RUL, optimizing maintenance strategies, ensuring reliability,
and managing costs in power distribution systems. Accurate RUL estimation enables timely maintenance actions, minimizes the risk
of failure, and improves the overall reliability and efficiency of the power grid. The significance of this estimation is particularly
important in terms of economic efficiency. The scheduling of maintenance activities is optimized, resulting in periodic maintenance,
which is not always economically feasible, being avoided. This approach facilitates more efficient resource management, reduced
operational costs, and extended transformer life without increasing the risk of failure.

In addition to the economic benefits, RUL estimation also improves the reliability of electrical power supply. Transformers are
critical assets in energy distribution, and knowledge of the RUL allows operators to ensure the electricity supply remains stable. It is
particularly salient in urban environments characterized by fluctuating electricity demand, where transformer failures can precipitate
significant disruptions to the power grid. In the contemporary context, integrating renewable energy sources is a significant challenge
confronting power systems. Given the increasing number of renewable energy sources, such as solar and wind power, which are
inherently stochastic, transformers require close monitoring to ensure reliability. The RUL estimation facilitates the management
of this challenge, ensuring that transformers can adapt to load changes and remain optimally operational in modern power grids.
The KGS method is effective in dealing with the significant data limitations that can impact the accuracy of RUL prediction in the
system. A primary challenge pertains to the quality of data, which is frequently incomplete or inconsistent, impeding the analysis
process. Errors in prediction, reduced maintenance effectiveness, and increased transformer failure risk can all result from inaccurate
or limited data.

Method details

This study applies the Cognitive Artificial Intelligence (CAI) method, called Knowledge Growing System (KGS) to predict the
transformer RUL. KGS shows its superiority over Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS) in predicting the
health of a transformer by assessing its faults through the interpretation of the Dissolved Gas Analysis (DGA) based on the Doernenburg
Ratio method. The health is assessed by calculating various influencing factors, such as ambient temperature, oil insulation condition,
loading, insulation resistance, and grounding resistance. KGS performs learning by interaction with all influencing factors to RUL to
generate its knowledge and uses its knowledge to predict the transformer life. The most probable prediction is shown by the highest
value of the Degree of Certainty (DoC), which is measured in probability or percentage.

On the other hand, a machine learning method called backpropagation neural networks (BPNN) was also utilized to predict
the transformer RUL using its conventional mechanism. BPNN generates knowledge by adjusting its connection weights through
gradient descent optimization to minimize prediction errors. Both methods aim to improve prediction accuracy and support preventive
maintenance strategies, ensuring reliable transformer performance and efficient power system management. The study used Mean
Square Error (MSE) to measure the average squared difference between predicted and actual values to assess the BPNN predictive
performance accurately. In addition, Mean Absolute Percentage Error (MAPE) was used to evaluate the BPNN relative percentage
of error, which provides insight into the model’s accuracy. The KGS method estimates the percentage of the health index, which
provides a qualitative assessment of the condition of the transformer.

A comparative analysis was performed to test the two methods’ predictive capabilities and practical application. The validation
results show that the backpropagation method achieves a mean square error of 0.00 and a MAPE of 3.16 %, with a maximum accuracy
of 100 %. On the other hand, the KGS method estimates the health level of transformers at 87.5 %, which shows its reliability in
assessing the useful life of transformers. These two approaches can ensure the right decisions in transformer maintenance and lifecycle
management, optimizing operational performance and long-term asset utilization.

Method validation

The validation is done using a new intelligent method, the KGS, and the validation results were compared with the prediction of
the BPNN method. KGS was validated directly to the operator of the Sengkaling Substation. This research presents a new approach
to predicting RUL using the KGS method. The first stage of this method is processing the main parameters obtained from various
sensors or transformer monitoring systems. Next, the data normalization stage is required to ensure that the data are in the appropriate
range, values O to 1. After the normalization process is completed, the adjusted data is analyzed using the New Knowledge Probability
Distribution (NKPD). The NKPD aims to form a probability distribution for transformer conditions based on the most recent data. It
is continuously updated so that KGS can identify new patterns and adaptively adjust its predictions. The results of the NKPD are then
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used in the final step, the Degree of Certainty (DoC). DoC is used to assess the system’s confidence in the decision. In addition, RUL
prediction also uses a comparison method that can support the KGS prediction results.

The method used for comparison is BPNN. BPNN uses weight and bias adjustments in the network, which are iteratively adjusted
until the model achieves high accuracy in detecting RUL predictions. BPNN results require a lengthy training process, so periodic
model updates are necessary. As an illustration, in the first semester, the percentage of transformer health level is 75 %. After proper
maintenance, according to the transformer SOP in Indonesia, the transformer health level increased to 87.5 %. According to the
Health Index (HI) standard, the value range set for transformer health under excellent conditions is 85-100 %. The KGS results
are compared with the BPNN method, which shows 100 % network accuracy. The BPNN results show a very long training time to
achieve high accuracy with very small MSE and MAPE values. This paper shows that RUL using KGS is a new and superior method
that enables more timely and effective maintenance actions. It is the most effective method to achieve faster response to transformer
maintenance. The results show that the new KGS method can accurately address the failures and damage to the transformer due to
a lack of real-time maintenance.

Introduction

Electricity is a vital resource for modern society, used in many aspects of daily life [1]. The contemporary lifestyle has been shown
to influence electricity consumption significantly. Projections indicate that global electricity demand will increase by up to 80 % by
2024 [2,3]. The necessity for electricity has become an essential part of everyday life. The electricity demand can raise concerns about
the quality of the electricity supply [4,5]. The necessity for electricity can give rise to concerns regarding the quality of the electricity
supply. Ensuring the reliable distribution of electrical energy is imperative to meet the ever-increasing demand, thus underscoring
the necessity for power transformers.

Power transformers are required to have a long RUL, according to IEC 60,076, 2018 [6], of 20.55 years or 7500 days with a
normal loss of life of 0.0133 % per day [2-4,7,8]. Nonetheless, many extrinsic factors can accelerate the deterioration of transformers.
Consequently, to ensure reliability and preserve transformer performance, it is necessary to predict the RUL of the transformer [9,10].
In the operational context, transformers should be subjected to loads that do not exceed 80 % of their capacity. This approach is
essential to ensure the transformer’s continued efficiency and extend its operational useful life [4].

The extension of the service life of transformers is contingent upon maintaining their performance by implementing routine and
scheduled maintenance procedures. The maintenance performed is preventative maintenance. Implementing effective maintenance
practices is instrumental in enhancing the electrical system’s reliability and mitigating the risk of transformer failure, thus reducing
the impact on the stability of the electrical supply [11]. The maintenance of power transformers is an essential aspect of electrical
engineering. It must be carried out with due consideration for factors that affect its RUL, such as operating load [12], ambient
temperature, condition of the insulation oil, insulation resistance, and grounding. When a transformer operates with a load that
exceeds the ideal limit, it is imperative to undertake periodic monitoring and evaluation of the loading to avert accelerated insulation
degradation [13].

High temperatures have been shown to accelerate insulation degradation. Therefore, optimal cooling systems and routine in-
spections are required to detect potential overheating [14]. Furthermore, it is imperative to undertake insulation oil testing and
maintenance to ensure the stability of its dielectric properties, thus preventing electrical failure. Considering these factors, an appro-
priate maintenance strategy can be implemented to extend the transformer’s life and maintain the electrical system’s reliability. The
RUL of the transformer is predicted using two different approaches: the BPNN and the KGS method. These methods focus on inte-
grating physical models with a data-driven approach, optimizing feature extraction, and utilizing uncertainty information. A study
combining model-based and data-driven methods has the potential to overcome the limitations posed by non-linearity and small
sample sizes [15,16].

Several research has predicted the RUL of transformers using the Health Index (HI) method, which numerically assesses the
condition of transformers based on dielectric, thermal, mechanical, and electrical factors. The findings of these studies suggest that
transformers with an HI of 0.45 at 15 years of age are likely to reach their designated useful life in 18.42 years, while new transformers
are estimated to last up to 24.70 years. However, it should be noted that the accuracy of these predictions can be affected by
limitations in measurement data [17]. In a separate research study, another model using a dual exponential degradation model and
Gated Recurrent Units (GRU) showed improved accuracy in predicting the RUL of transformers under limited data conditions [18].
In small datasets, Data-Driven Engineering Systems (DES) are the preferred option due to their simplicity and ability to minimize
overfitting.

However, it should be noted that DES is less capable of capturing complex temporal dynamics. The GRU model is more ro-
bust but is prone to overfitting and computational inefficiency when data is limited. The employment of frameworks incorporating
multi-sensor data, feature fusion, and graph convolutional autoencoders has been demonstrated to enhance the interpretation and
prediction accuracy of transformer RUL [19], due to inadequate infrastructure, this approach cannot be applied. In order to over-
come data limitations, the transformation of historical data into a lifetime matrix allows for the integration of uncertainty, thereby
improving prediction accuracy [20]. A significant proportion of the research described uses prediction of RUL with supervised and
semi-supervised learning, where researchers use unlabeled data to reduce the challenges posed by data scarcity, thereby improving
model robustness. In conjunction with the advancement of CAI and machine learning technologies, numerous methods have been
proposed to enhance the accuracy of predicting the RUL of transformers.



N.A. Febriani, I.N. Syamsiana, A.D.W. Sumari et al. MethodsX 14 (2025) 103330
Related works

In the research [21], the Health Index (HI) method was used with 33 transformers as the research’s subject to identify the trans-
formers’ condition. The parameters encompassed in the study included loading, oil quality, and grounding resistance. The findings
indicated that transformers exhibiting HI values ranging from 40 % to 75 % were deemed to be in a state of suboptimal condition.
This factor was found to increase the probability of transformer failure. The study of [21] employed a range of HI methods (including
Type L, 1L, I1I, WSS-Based, CA-Based, FL-Based, RA-Based, Pa-Based, and Al-Based) with a single transformer as the object of research
to identify the monitoring of power transformer conditions. The parameters utilized encompassed the results of dissolved gas and
oil (DGA) testing. The findings indicated that HI levels ranging from 70 % to 80 % signified optimal transformer conditions, as evi-
denced by the superiority of the Al-based algorithm in comparison to alternative methods. The Al-based method is favored because
it establishes a fundamental correlation between the condition data and the transformer health index [22] .

The Enhanced Health Index (EHI) method, a development of the standard Health Index (HI) method, was utilized in the study
[23] with 204 transformers as the object of research. The parameters employed encompass Dissolved Gas Analysis (DGA), Oil Quality
Factor (OQF), and the transformer’s average daily load. The results obtained from this study indicated that 7 transformers exhibited an
HI value ranging from 50-70 % (fair condition), 78 transformers demonstrated an HI value ranging from 70-85 % (good condition),
and 119 transformers showed an HI value ranging from 85 %—100 % (very good condition).

The study [24] utilized the General Regression Neural Network (GRNN) method on 30 transformers as the object of research to
identify an enhancement in the accuracy of assessing the overall condition of the transformers. The parameters utilized encompass
the findings of tests conducted to ascertain dielectric strength, acidity, and water content. The findings indicated that among the 30
transformers classified as good condition, 83 % exhibited satisfactory performance. This method is reliable and highly effective in
automatically calculating health indices, thus facilitating the transformer condition assessment. Research [25] employs the Health
Index (HI) method on Transformer 5 (T5) conditions with seven transformers under investigation to assess transformer conditions
and inform maintenance decisions. The parameters employed encompass a comprehensive array of assessments, including the turn
ratio test, winding resistance test, power factor test, short-circuit impedance, dissolved gas analysis (DGA), CO,/CO ratio, dielectric
strength, interfacial tension, and frequency domain spectroscopy. The obtained results indicate that the health value of Transformer
5 (T5) was 85 %, which is considered suspicious because it indicates that it is in the poor condition category.

Research by [17] utilizing model- and data-based methods has successfully overcome non-linearity and small sample sizes. The
dual exponential degradation model and Gated Recurrent Units (GRU) have demonstrated enhanced accuracy in RUL prediction
in circumstances where data is limited. The findings demonstrate that the proposed method exhibits robust performance in both
data-leakage and non-data-leakage scenarios, surpassing the efficacy of standalone methods in producing precise RUL predictions in
limited sample datasets. Finally, this study is dedicated to integrating physical and data-driven models to overcome the challenges of
data irregularities in future research.

Research [19] demonstrates that for small datasets, Data-Driven Engineering Systems (DES) may be preferable due to their sim-
plicity and reduced risk of overfitting, but this model has limitations in capturing complex temporal dynamics. Conversely, despite
its enhanced robustness, GRU necessitates meticulous management to circumvent overfitting and computational inefficiency when
data is limited. A framework that utilizes multi-sensor data and feature fusion improves interpretability, and graph convolutional
autoencoders improve the accuracy of the RUL lifecycle. Research [11] employs the Combined Duval Pentagon (CDP) and Modified
Combined Duval Pentagon (MCDP) methods to diagnose early faults in transformer isolation systems. The parameters employed en-
compass the concentration of furans (2-FAL), CO,, CO, and methanol (MeOH). These variables are then used as input for the fuzzy
inference model, with the output being an estimation of the insulation’s degree of polymerization (DP). The findings demonstrate the
efficacy of the developed fuzzy inference model, which can accurately estimate the insulation’s degree of polymerization (DP). The
model’s performance is compared to other mathematical models, including ANFIS and previous fuzzy logic models. For instance, for
transformers with a DP value greater than 1000, the model indicates that the paper insulation is in excellent condition. Conversely,
for transformers with a DP value <250, the model signals that the paper insulation is approaching the end of its useful life.

Research by [25,26] utilized the Load Curve method, employing a single-tested transformer. The parameters encompassed in
the study included transformer loading, transformer oil insulation (BDV, water content, acidity, IFT, and color and appearance),
and ambient temperature. The findings indicated that, among the various parameters examined, transformer loading substantially
influenced the rate of decline in the RUL of the transformer. It was determined that when the load reaches 80 % of its capacity, the
transformer can be said to be overheating. The findings of transformer load measurements from 2021 to 2023 demonstrate that the
maximum load is anticipated in December 2023, reaching 73.00 % in the ONAF transformer type. Predictions indicate that the RUL
of the transformer in 2023 is 24.48 years, decreasing to 23.51 years in 2024 and 22.53 years in 2025. To maintain the operational life
of the transformer, measures to mitigate identified risks are to be implemented following the Indonesian Electric Power Transformer
SOP. This mitigation includes periodic inspections to identify problems such as insulation aging, oil leaks, or signs of wear. Two
distinct approaches are employed to address this challenge: the backpropagation method and the KGS. The latter can monitor the
condition of the transformer by predicting its RUL.

Research method
The research is in the Sengkaling area of Malang Regency, East Java, Indonesia. The Sengkaling Substation that functions in

the regional electricity network distributes electricity to the Customer Service Unit (CSU) subsystem for the Batu, Dau, Dinoyo, and
Pendem areas, as well as centers of education and housing. The area is located near the banks of the Brantas River, combining
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residential zones, agricultural land, and educational institutions. The exact coordinates of the substation are recorded at 7°54’17 'LS
and 112°34’26’ BT. Sengkaling Substation has a medium voltage (150 kV) transmission network integrated into the Java-Bali system.
Sengkaling Substation is important in providing a reliable and stable electricity supply, driving economic growth, and improving the
quality of life for customers in the surrounding area.

Knowledge growing system

KGS aims to naturally mimic the human inference system’s ability to develop knowledge. It is necessary to have a complete
understanding of the mechanisms that occur within it. The human inference system model is illustrated in Fig. 1. In this model,
the input is conceptualized as a phenomenon occurring in the environment, which can be physical or non-physical [16]. Physical
inputs are characterized by their sensory properties, namely touch, sight, and perception, which facilitate recognition. Conversely,
non-physical inputs, such as information obtained through communication with other individuals, are more challenging to identify
due to their intangible nature. The subsequent processes within the human brain can be categorized into the three steps that have
been previously delineated. The final element of the model is the system output, which manifests as new knowledge [27].

Mathematical modeling of human inference system (HIS)

The overarching objective of the human inference system is to obtain novel insights into the dynamics of the environment. The
acquisition of new knowledge is a process that unfolds through three distinct phases [28,29]. Initially, there is the integration of
information, wherein the data relayed by the sensory organs is amalgamated to generate a comprehensive understanding. Subse-
quently, the process of information inference ensues, which pertains to the mechanism through which conclusions are derived from
the integrated information. Finally, the culminating step is the fusion of information inferences, where inferences derived from the
amalgamated information are methodically combined to yield new knowledge [30].

The human organism is equipped with five sensory organs that enable the perception of physical and non-physical phenomena
in the environment [30]. The relevant sensory organ then interprets these phenomena as information for subsequent processes. The
brain then integrates the information the individual’s sensory organs provide to obtain comprehensive information. In this model, we
assume that each new piece of information is the product of the combined information perceived by two or more sensory organs or
sensors. Based on this HIS concept, we generalize the model to a system equipped with sensors. Where A is the number of inferences
from the combined information, and § is the number of source information or sensors [31]. In the case of humans with § = 5, there
will be (2° — 5) — 1 = 26 combinations of combined information or clusters [28]. This value is obtained under the assumption that
there is no merging of information for information conveyed from one pair of sense organs, such as the eyes and ears [30]. Each
combination will have its own information-inference, as shown in Eq. (1).

x:(zS_a)_l (€8]

It is necessary to observe it periodically to comprehend a specific phenomenon. Through this method, the brain acquires new
information-inference over time, which is then combined to generate knowledge about the observed phenomenon once sufficient
observations have been made. In essence, the sense organs perceive the dynamics of the environment and transmit the information
they collect about the perceived phenomenon to the brain [16,27,32]. The subsequent process entails the brain combining this
information with its existing knowledge to formulate conclusions through reasoning. The resultant information comprises all sensory
data and previously accumulated knowledge, which is then utilized as a foundation for estimating the observed phenomenon. This
estimate is measured by a term called Degree of Certainty (DoC) [29], which undergoes fluctuations as additional information is
received from the senses over time.

The concept of knowledge growing system (KGS)

Asillustrated in Fig. 2, the growth of knowledge in KGS can be conceptualized as an extension [27,28]. The system employs sensors
to perceive the environment, and the gathered information is subsequently directed to the inference system, where it is processed to
generate new knowledge. This knowledge is stored in the Knowledge Base (KB) as a foundation for subsequent knowledge development
steps. In each step of the knowledge development process, the system utilizes information inference fusion to acquire new knowledge.
Once the observations are deemed sufficient, the latest knowledge is obtained by applying information-inference fusion.

KGS is a conceptual framework or methodology designed to facilitate knowledge growth by aggregating new information, acquir-
ing insights from data, and improving and refining ongoing knowledge [30]. KGS typically processes information from a variety of
sources, including sensors, environmental data, and human input. This information is combined with filtering, analysis, and updating
mechanisms to create and improve existing knowledge [29]. In general, knowledge will be generated as information increases over
time. The KGS concept emerged from observations of the mechanisms that occur in the human brain when it fuses information and
references to gain new knowledge by developing the Human Inference System (HIS) model [16]. It is used as the KGS model shown
in Fig. 1 and Eq. (1).

Based on Fig. 2, we develop knowledge of growth mechanisms for the designed system. It is a process to obtain new knowledge
from information collected and conveyed from a phenomenon observed by the senses through a five-step process: information merg-
ing, information inference, information fusion, knowledge inference, and knowledge inference fusion. A mechanism of knowledge
generation that occurs in KGS modeling, as shown in Fig. 2, shows the probability of the new knowledge called Degree of Certainty
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Fig. 2. The Concept of Knowledge Growing System.

Information fusion and
inferencing

(DoC). DoC is a value that determines the certainty of new knowledge about the observed phenomenon. DoC can be obtained by
applying the ASSA2010 (Arwin Sumari-Suwandi Ahmad) information-inferencing fusion method. Several steps must be taken to de-
velop knowledge, such as knowledge base and fusion mechanisms. The combination is done by integrating the information received
with pre-existing knowledge or information [30,33]. This knowledge results from a combination of new and existing information,
known as processed or posterior information. The ASSA2010 version that considers the time parameter in its calculation is called
OMASSA2010 (Observation Multi-time Arwin Sumari-Suwandi Ahmad) information-inferencing fusion method.

For each step, the following will be applied [16].

(1) Process 1 (P-1)

Implementing the Bayes Inference Method (BIM) achieves the fusion of information received from sensors [27]. The rationale
behind the development of a methodology termed ASSA2010 information-inferencing fusion is outlined below [30]. This methodology
will be employed in the subsequent process to derive inference from the information fusion resulting from P-1. The ASSA2010 method
is outlined in Eq. (2).

=, p(v)

) = i

r(v) - 20
Data is collected using parameters and then compared with established standards and relationships. In this context, NKPDT is

knowledge developed during interaction time, while P(\yg) is the NKPD indicated by the notation ‘1’ The decision taken from the

NKPDT is referred to as the Estimated NKPD and is measured by the DoC [29].

(2) Process 2 (P-2)

The KG mechanism will be carried out from time to time on P-2, where inferences collected over a period will be combined and
then summarized to obtain final inferences. This inferencing is also obtained by applying Eq. (3). This final inference will be expressed
as new knowledge because of KGS learning over time.

P(qﬂ%)estimate = 0 [P(\p’r)] 3)

Meanwhile, P(\pjT) estimate is knowledge obtained from the NKPD and is indicated by the notation ‘1’, while for binary representa-
tion of P(y)) in preparation for a multi-time knowledge generation. Decisions will be made based on the highest DoC in the NKPDT
matrix shown in Eq. (2) and (3) [16,27,32,33]. A two-time process uses the OMASSA2010 [31].

Backpropagation neural networks (BPNN)

The BPNN method is an algorithm used for training artificial neural networks to reduce output errors when predicting the RUL of
transformers [34]. This algorithm can adjust the weights based on the error gradient, with each training step dedicated to reducing
overall error [30,35]. This advantage allows the application of backpropagation to various problems, including classification, regres-
sion, and pattern recognition. The BPNN algorithm accurately defines the relationship between independent variables [16]. In the
context of predicting the RUL of a transformer [36], the independent variable is considered a function of the input layer, the hidden
layer, which processes and transforms the input data, and the output layer, which represents the dependent variable [37], in the
backpropagation topology shown in Fig. 3.
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Table 1
Data collection of transformer.
No Date Current (A) Oil Apparent power Ambient K RUL RUL RUL
(MVA) (Year 2023) (Year 2024) (Year 2025)

1. 21/01/2021 876 50 31.08 30 0.52 24.98 23.98 22.98
2. 22/01/2021 1060 50 37.19 30 0.62
3. 23/01/2021 1120 50 39.41 30 0.66
4. 21/02/2021 892 50 31.48 30 0,52
5. 22/02/2021 937 50 32.95 30 0.55
6. 23/02/2021 1072 50 37.78 30 0.63
7. 21/03/2021 1041 50 36.50 30 0.61
8. 22/03/2021 1027 50 36.00 30 0.60
9. 23/03/2021 1052 50 37.11 30 0.62
10. 21/04/2021 906 50 31.87 30 0.53
11. 22/04/2021 1027 50 36.00 30 0.60
12. 23/04/2021 1023 50 36.12 30 0.60
13. 21/05/2021 901 50 31.77 30 0.53
14. 22/05/2021 1009 50 35.41 30 0.59
15. 23/05/2021 998 50 35.27 30 0.59
16. 21/06/2021 950 50 33.44 30 0.56
17. 22/06/2021 998 50 35.05 30 0.58
18. 23/06/2021 1206 50 42.35 30 0.71
19. 21/07/2021 975 50 34.23 30 0.57
20. 22/07/2021 1002 50 35.19 30 0.59
21. 23/07/2021 1195 50 41.97 30 0.70
22. 21/08/2021 931 50 32.75 30 0.55
23. 22/08/2021 896 50 31.58 30 0.53
24. 23/08/2021 1200 50 42.14 30 0.70
25. 21/09/2021 931 50 32.75 30 0.55
26. 22/09/2021 902 50 31.77 30 0.53
27. 23/09/2021 1208 50 42.42 30 0.71
28. 21/10/2021 992 50 34.82 30 0.58
29. 22/10/2021 1037 50 36.40 30 0.61
30. 23/10/2021 1208 50 42.42 30 0.71
31. 21/11/2021 1000 50 35.12 30 0.59
32. 22/11/2021 1008 50 35.39 30 0.59
33. 23/11/2021 1204 50 42.32 30 0.71
34. 21/12/2021 1000 50 35.12 30 0.59
35. 21/12/2021 1023 50 35.90 30 0.60
36. 23/12/2021 1256 50 44.05 30 0.73

The proposed methodology consists of the following steps:
(a) Data Collection:

The data set used includes data from Current (A), Oil, Apparent Power (MVA), Ambient, and Load Factor (K). It is collected for
use in Backpropagation model training.

The data presented in Table 1 and Fig. 3 contains parameters of the electrical network that record current (Amps), power (MVA),
ambient temperature, and load factor K, which may be related to the operating condition or aging of the transformer. From the
table, the operational load varies between 31.08 MVA and 44.05 MVA, while the ambient temperature remains at 30 °C. The [EC
60,076, 2018 [38] standard asserts that the RUL of transformers is significantly influenced by operating temperature and load. The
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Fig. 4. Methodology followed.

IEC stipulates that the maximum oil temperature should not exceed 98 °C, and the maximum winding temperature should be below
110 °C to ensure the insulation remains in optimal condition. Exceeding these limits has been shown to lead to a marked increase in
the rate of insulation degradation, which in turn accelerates the aging process of the transformer.

Furthermore, the K factor, which is presented in tabular form, has a range of 0.52 to 0.73. It can be indicative of the rate of
acceleration of transformer aging. The IEC 60,076, 2018 guidelines utilize a hotspot factor to determine the impact on the insulation
life. Higher K values may indicate harsher operating conditions, accelerating the transformer’s useful life decrease. The data analysis
in the table indicates several instances where the loads are near or exceed the standard capacity, particularly at MVA values greater
than 40. The concomitant increase in winding temperature can accelerate the insulation aging process. Additional data, including oil
and winding temperatures and maximum load history, are required to achieve a more accurate analysis of the RUL.

(b) Data Preprocessing:

A normalization process standardizes input features and target variables, ensuring a uniform scale. In addition, the dataset is
partitioned into different training and testing sets.

(c) Model Architecture

The model architecture used in the Backpropagation method consists of several main layers: the input, hidden, and output layers.
The input layer receives the normalized data, which is then passed to one or more hidden layers. Each neuron in the hidden layer
uses a nonlinear activation function, such as Rectified Linear Unit (ReLU), to capture complex relationships in the data [39]. The
model also uses batch normalization after each hidden layer to improve training stability. In addition, a dropout layer is applied as a
regulatory technique to prevent overfitting by randomly ignoring several neuron units during training. At the output layer, the model
generates predictions using linear activation [40-43].

(d) Training

The training phase uses an optimizer with a learning rate set to 0.01. Training is carried out over several epochs until the model
converges or the error does not change significantly. After training, the model is evaluated using a validation set, and parameters
such as learning rate or number of neurons can be adapted to improve model performance, as shown in Fig. 4.

(e) Evaluation

Model evaluation is performed on a test set to measure predictive performance. Several performance metrics, including Mean
Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and R-squared, are calculated to assess the model’s effectiveness, as
presented in Table 2.
Result and discussion

RUL using the KGS method

This research uses the KGS method to predict the RUL transformer in the substation. This research is in the Transmission Service
Unit and Substation (ULTG) and Transmission Service Unit (UPT). The data used in this research were obtained from PT PLN (Persero)
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Table 2

MAPE value.
MAPE Evaluation
MAPE <10 % High Accuracy Forecasting
10 % < MAPE < 20 % Good Forecasting
20 % < MAPE < 50 % Reasonable Forecasting
MAPE Inaccurate Forecasting

Table 3
The data represents the normalized transformer RUL prediction.
Prediction Observation Year RUL Parameters of transformer
Time
Ambient Insulation of transformer oil Loading Insulation Grounding
Temperature . resistance resistance
BDV Acidity IFT Color and
appearance
S1 yi 2021 0.50 0.00 0.94 1.00 0.00 0.00 1.00 1.00
¥ 2022 1,00 0.37 0.00 0.12 1.00 0.52 0.00 0.00
Y3 2023 0,00 1.00 1.00 0.00 0.22 1.00 0.00 0.00
S2 yi 2021 0.00 0.00 0.94 1.00 0.00 0.00 1.00 1.00
Y2 2022 0.13 0.37 0.00 0.12 1.00 0.03 0.00 0.00
Y3 2023 1.00 1.00 1.00 0.00 0.22 1.00 0.00 0.00
Average M 2021 0.25 0.00 0.94 1.00 0.00 0.00 1.00 1.00
Y2 2022 0.57 0.37 0.00 0.12 1.00 0.27 0.00 0.00
v 2023 0.50 1.00 1.00 0.00 0.22 1.00 0.00 0.00
Table 4
Converted transformer RUL prediction data for KGS input (NKPD).
Prediction Observation Year RUL Parameters of transformer
Time
Ambient Insulation of transformer oil Loading Insulation Grounding
Temperature . resistance resistance
BDV Acidity IFT Color and
appearance
S1 yi 2021 1 1 1 1 1 1 1 1
Y2 2022 1 1 1 1 1 1 1 1
y3 2023 0 1 1 1 1 1 1 1
S2 M 2021 0 1 1 1 1 1 1 1
Y2 2022 0 1 1 1 1 0 1 1
y3 2023 1 1 1 1 1 1 1 1

UPT Malang and the Meteorology, Climatology and Geophysics Agency. The parameters analyzed include ambient temperature,
transformer oil insulation characteristics (BDV, Acidity, IFT, Color and Appearance), Loading, Insulation Resistance, and Grounding
Resistance. The data was collected over a certain period, as shown in Table 3.

The KGS method processes the learning-by-interaction data to predict the transformer’s RUL more accurately. The prediction
results are expected to assist in decision-making related to transformer maintenance and replacement, thereby improving the electrical
system’s reliability at the substation.

The data results for the Knowledge Growing System are obtained by applying the methodology described in Table 4 to the predicted
RUL of the transformer. The mean value per year is then utilized as a threshold to calculate the predicted RUL of the transformer at
each location (x;). This value is then converted into binary data ‘0’ or ‘1’, depending on the value. The results of this conversion are
presented in Table 6 and form the basis for applying the equation in the KGS, as illustrated in Eq. (2). The initial step in this process
aims to identify the value of ‘1’ that will be used in the probabilistic learning method to improve prediction accuracy.

The dataset utilized in this study is presented in Table 4 and encompasses the outcomes of employing the KGS formula in the
form of NKPD. The calculation in KGS refers to the inference fusion method introduced in ASSA2010. In this context, the symbol &
represents the number of sensory organs or sensors that observe a particular phenomenon in an area. The variable P(vji) is employed
to assess the characteristics of phenomenon i compared to hypothesis j. Furthermore, the results of the NKPD model at time t for
initial interaction are represented by the variable P(\yf). When multiple examples are present at a given time, the value ‘1’ is adjusted
to reflect the relevant interaction [44].

Following acquiring the NKPD’s mathematical model, the existing data will be transformed into a (DoC model, as shown in Table 5
and Eq. (4).

DoC = [P(y)estimate — P<U )

) [x100% @
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Table 5
Prediction data of remaining useful life of DoC results.
Prediction Observation Year RUL Parameters of transformer
Time
Ambient Insulation of transformer oil Loading Insulation Grounding
Temperature . resistance resistance
BDV Acidity IFT Color and
Appearance
S1 Y1 2021 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
A2 2022 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
Y3 2023 0.09 0.13 0.13 0.13 0.13 0.13 0.13 0.13
S2 N 2021 0.07 0.13 0.13 0.13 0.13 0.13 0.13 0.13
Yo 2022 0.06 0.14 0.14 0.14 0.14 0.11 0.14 0.14
Y3 2023 0.07 0.14 0.14 0.14 0.14 0.11 0.14 0.14
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Fig. 5. Remaining Useful Life Chart for SI.

This transformation aims to improve the accuracy of analysis and decision-making based on probabilistic learning results. The
KGS method enables the system to adaptively increase its knowledge and understanding of the transformer’s RUL patterns, which
can ultimately be used in preventive maintenance strategies.

The analysis of the DoC results in Table 5 in Fig. 5, 2 indicates that each parameter plays a significant role in predicting the
RUL of transformers at substations, as observed in S1 (Semester 1). A notable pattern emerges in the prediction of the RUL of the
transformer in the period from 2021 to 2023, as shown in the graph of the first semester results. The values obtained are nearly
identical during this period, indicating a proportional relationship between the parameters. The transformer’s RUL is calculated using
eight main parameters, namely ambient temperature, transformer oil insulation quality (BDV, acidity, IFT, color, and appearance),
load, insulation resistance, and grounding resistance. The calculation results indicate that the transformer is estimated to have a RUL
of 23.42 years, while its current operational age is approximately +7 years. It is imperative to note that the findings are contingent
on the condition of the transformer at the specific substation where the observation was conducted.

The RUL of a transformer is 23.42 years, which can be affected by several factors, one of which is a reduction in ambient temper-
ature. While a temperature decrease can lead to a reduction in the RUL of a transformer, this factor does not have a significant direct
effect on the RUL. As shown in Table 5 and Fig. 5, although some factors remain stable, other parameters can accelerate changes in
the RUL. The graph indicates that the ambient temperature is the primary factor contributing to the decline, thereby affirming the
satisfactory condition of the substation transformer, with its health level reaching 87.5 % of 100 % during the initial semester. Fig. 6
reveals a change in the condition of the transformer in the second semester compared to the first. This change can be attributed to a
decrease in two main factors: ambient temperature and load. The decline in load was attributed to the onset of the rainy season in the
final months, which resulted in an increase in electricity consumption in the household sector compared to the industrial sector. The
increased utilization of space heaters, water heaters, clothes dryers, and supplementary lighting in the home during the rainy season
has been identified as contributing to the increased electricity demand. This analysis underscores the significance of considering a
broader array of factors that can influence the residual value of a transformer’s useful life. The graph presented indicates that the
two most significant parameters are ambient temperature and load, this suggests that the substation transformer is operating within
an acceptable range of performance, with a calculated RUL of approximately 75 % of 100 %.

The transformers are still in relatively good operating condition. Nevertheless, to ensure optimal performance and prolong the
transformer’s useful life, it is necessary to carry out regular monitoring and maintenance, such as strict load monitoring and, if neces-
sary, operational adjustments. The failure to implement these measures may result in a more rapid degradation of the transformer’s
performance than expected, potentially reducing the RUL of the transformer. The results of the analysis in Fig. 5 and Fig. 6 show
that long-term use of transformers can cause gradual wear and damage to their components, which can lead to a reduction in the
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Table 6

Prediction of RUL Transformer.
Prediction Age of use (year) RUL (year)
2023 6 24,98
2024 7 23,98
2025 8 22,98

overall performance of the transformer. While effective ambient temperature management can mitigate the risk of failure, the impact
of transformer performance degradation remains an issue that cannot be avoided entirely.

In the event of transformers continuing to operate under conditions of load that are lower than their optimal capacity, it is
to be expected that their power utilizations will not be maximized. This is especially true in cases where there is an increase in
electricity demand that the existing system cannot meet. While operating transformers at lower loads can extend their lifespan and
mitigate the risk of failure, regular monitoring remains essential. Maintenance by following industry standards and manufacturer
recommendations is imperative, encompassing regular condition monitoring, preventive maintenance, and replacement of worn
or damaged components. Consequently, for transformers with a RUL of >20.55 years, rigorous monitoring and maintenance are
required to maintain proper operation. The implementation of periodic maintenance is paramount to ensure the continued optimal
functioning of transformers and to avert damage that could have repercussions for the electrical system. This analysis suggests a
potential opportunity to enhance the power capacity accepted by transformers. However, effective strategic planning is essential to
ensure sufficient power availability and enhance operational efficiency in the future.

RUL using the BPNN method

In this research, the BPNN is employed as a comparison method to the new intelligent CAl-based method using the KGS method
applied to transformer RUL prediction. The selection of BPNN as a comparison method is predicated on its status as a prominent
artificial neural network-based machine learning method, which is readily implementable in prediction applications. The BPNN
training is performed using the Levenberg-Marquardt algorithm (trainlm), with MSE as the primary metric for evaluation. The findings
from the training process demonstrate that the BPNN model attains a low MSE value, thereby signifying its capacity to predict with
a high degree of accuracy.

The predicted RUL of the transformer, as presented in Table 6, shows that the model predicts a steady decrease in the RUL each
year. The prediction table shows an increase in the age of use of the transformer, with a gradual increase from 6 years in 2023, 7
years in 2024, to 8 years in 2025. Concurrently, the predicted RUL shows a steady decrease from 24.98 years in 2023, 23.98 years
in 2024, to 22.98 years in 2025. This pattern of decline can be attributed to the fact that, annually, the transformer will accrue a
year of age due to factors that affect it. Despite this decline, the analyzed transformer is still classified as good. The model accurately
predicts transformer degradation, exhibiting minimal or no prediction errors.

The RUL prediction provides a reliable basis for transformer maintenance planning, indicating a residual lifespan of over 20.55
years, eliminating the need for immediate replacement. However, continuous monitoring is essential to address external factors like
overloading, high temperatures, or humidity that may accelerate degradation. Implementing a Preventive Maintenance strategy is
recommended to maintain optimal performance and extend lifetime. Additionally, the model aids in long-term degradation analysis,
allowing for early detection of deviations from expected trends. Thus, it is a prediction tool and a health monitoring system for
optimizing operations and infrastructure planning.

As illustrated in Table 7, the model’s performance in predicting the RUL of the transformer for the years 2023, 2024, and 2025
is shown. In 2023, the model performed 354 iterations with a processing time of 1 s, resulting in a regression value 1.00, indicating
perfect prediction accuracy. The Mean Squared Error (MSE) was recorded at 0.00, while the Mean Absolute Percentage Error (MAPE)
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Table 7
Performance of RUL transformer.
Prediction Iteration Time progress Regression MSE MAPE Accuracy (%)
2023 354 0:00:01 1.00 0.00 3.82% 100 %
2024 289 0:00:00 1.00 0.00 3.39 % 100 %
2025 310 0:00:01 1.00 0.00 2.28 % 100 %
Table 8

Validation of RUL transformer.

Aspects In 2023 In 2024 In 2025

Optimal Number of Epochs 354 289 310

Best Validation Performance 6.6722x 107 9.9021 x 107" 3.8651 x 1077

Curve Stability Stable, no spikes Stable, no spikes Slight fluctuations around epoch 150 before
converging

Prediction Accuracy Very high High, but MSE is larger than the others Highest because it has the smallest MSE

Overfitting Risk None None None

was documented at 3.82 %. The model demonstrated an accuracy of 100 % in this prediction. In 2024, the model completed 289
iterations with a speed of less than one second. The regression value remains at 1.00, indicating that the prediction remains accurate
without deviation. The MSE registered at 0.00, while the MAPE registered at 3.39 %, slightly lower than the previous year. The
model demonstrated an accuracy of 100 % in this prediction. In 2025, the model performed 310 iterations with a running time
of 1 s. The regression value remained consistent at 1.00, indicating that the model remained reliable in predicting the RUL of the
transformer. The mean square error (MSE) remained at 0.00, and the MAPE decreased to 2.28 %, indicating an enhancement in the
model’s precision in forecasting transformer degradation on an annual basis. The model demonstrated an accuracy of 100 % in this
prediction.

From the three graphs presented, the prediction model used can estimate the transformer’s RUL with 100 % accuracy. The absence
of deviation between the predicted results and the target value confirms that this model can be relied upon to optimally support
transformer maintenance and replacement planning. One of the main factors that ensure the reliability of this model is the selection
of the appropriate best validation performance in the training process. The best validation performance determines the optimal point
to keep the model accurate and avoid overfitting. This value reflects the lowest validation error before it increases, indicating that
the model has achieved its best performance in recognizing the data pattern without being trapped by the unique characteristics of
the training data. Therefore, this optimal point is crucial to balance prediction accuracy and the model’s generalization ability. With
this approach, the model can provide highly accurate prediction results and remain effective under various operational conditions,
as shown in Table 8.

In 2023, the model achieved the best validation performance at epoch 354 with an MSE value of 6.6722¢ x 10~!°, The training and
validation curves appear stable with no spikes, indicating that the model learns well without experiencing instability. The prediction
accuracy of this model is very high, and there is no risk of overfitting, making it a reliable model for predicting the RUL of transformers.
In 2024, the model performs best with the best validation at epoch 310 and the smallest MSE value of 9.9021e x 10~'°. This means
the model has the highest prediction accuracy compared to models from previous years. However, there is a slight fluctuation around
epoch 150 before the curve finally converges. Despite the slight instability, the model does not suffer from overfitting and can still
be used for more accurate predictions than previous years’ models. In 2025, the model shows the best performance with the best
validation at epoch 310 and the smallest MSE value, which is 3.8651e x 10710, This means the model has the highest prediction
accuracy compared to models from previous years.

However, there is a slight fluctuation around epoch 150 before the curve finally converges. Despite the slight instability, the model
does not suffer from overfitting and can still be used to make more accurate predictions than previous years’ models. Overall, the
2025 model performs best as it has the lowest MSE, although it requires monitoring of initial training fluctuations. The 2023 model
is also excellent, with high stability, while the 2024 model converges faster but with slightly lower accuracy. It shows that when
choosing a model to predict the RUL of a transformer, it is important to consider the balance between several epochs, MSE value, curve
stability, and prediction accuracy. A very small MSE value indicates that the model can accurately predict the RUL of a transformer
before significant performance degradation. For example, if a transformer has operated for eight years, the model can estimate how
many more years it will function optimally. This high accuracy is crucial for power system operators to schedule maintenance or
replacements effectively. The low error values and consistent convergence patterns ensure reliable predictions, supporting informed
operational decisions. Ultimately, this model helps plan preventive maintenance, minimize failure risks, and enhance the efficiency
and reliability of the power system.

Comparison of KGS and BPNN methods

The KGS and machine learning methods are used for learning and decision-making but with different approaches. BPNN is an
algorithm used to adjust weights based on errors generated in artificial neural networks, while KGS focuses on dynamic knowledge
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Table 9
Comparison of knowledge growing systems and machine learning (BPNN) adapted from [48] with some adjustments.
Measuring parameter KGS Machine learning (BPNN)
Foundation science Cognitive psychology Neuroscience
Data Data is obtained when interacting directly The data must be provided in advance
Approach Emulate brain mechanism when a human think Emulate brain’s neutral network works
Knowledge generation paradigm Learning by interaction Learning by past data or experiences
The way of generation of knowledge Information-Inferencing Fusion Updating synapse weight
Knowledge generation method ASSA2010 Various neural-like computations depended on the problem
Knowledge generation time Very short Can be very long depended on the amount of data
Knowledge generation paradigm Unsupervised with told-information at the end Supervised
Mathematical Models Simple Complex
Number of data Very little Massive
Data collection No required Required
Data annotation No required Required
Computing power Low High
Training Phase No required Required
Retrained No Yes
Architecture Structure Simple Complex

development with learning by interaction [45,46]. The comparison between these two methods includes the scientific basis, the type
of data used, data labeling, adaptation to change, learning paradigms, advantages of each method, accuracy comparisons, and ways
of forming knowledge, as shown in Table 9.

The comparison between these two methods aims to understand their respective advantages and limitations in different application
scenarios. BPNN is more suitable for systems that need to learn from large amounts of data with complex patterns, while the KGS
is more effective in systems that require adaptive and fast decision-making [47]. By comparing these two methods, researchers and
practitioners can determine the most appropriate approach based on the specific needs of the CAI [30,31].

In this research, to further evaluate the generalization ability of the two proposed methods, a new intelligent method, KGS, is
compared with the comparative method, BPNN. It is important to note that both methods belong to the CAI and machine learning-
based approaches. Table 9 presents the model results from KGS and BPNN in predicting the RUL of the transformer, thus enabling an
analysis of the performance difference between the two methods. KGS is a new intelligent method that was developed and compared
with BPNN in predicting transformer RUL. The objective of this comparison is to ascertain the superiority of the method or to develop
CAI and machine learning approaches with the aim of enhancing the reliability of predictions. The utilization of more accurate
predictions is expected to prevent the premature failure of transformers and optimize maintenance strategies, thereby enhancing the
efficiency and reliability of the electricity system.

As shown in Table 9, KGS focuses more on interaction and inference-based approaches derived from cognitive psychology [49].
This method has been shown to generate predictions more rapidly, as it does not require large amounts of data and does not rely
on a lengthy training process. This approach facilitates the efficient prediction of the RUL of a transformer, even with limited data
available. Furthermore, KGS does not necessitate data annotation or a complex retraining process, thus facilitating its application
in industrial settings, prioritizing speed and efficiency. However, given the KGS model’s simplicity and inference-based nature, the
accuracy of the resulting predictions may be limited compared to data-driven methods, such as machine learning. In circumstances
involving more complex or unstructured data patterns, these methods may encounter limitations in detecting deeper relationships
between variables. Consequently, while KGS demonstrates notable strengths in speed and efficiency, its selection should be considered
case-by-case, mainly when high accuracy is a top priority in predicting transformer lifetime.

Conversely, the machine learning approach employs an artificial neural network methodology, necessitating substantial data and
considerable computing capabilities. In predicting the RUL of a transformer, this method requires a substantial amount of historical
data, a protracted training process, and readjustment in the event of alterations in the data pattern. The capacity to learn from
experience enables machine learning to identify patterns and long-term trends that are challenging to detect by inference-based
methods such as KGS. Overall, KGS is more suitable for systems with limited data and fast prediction needs, as it does not require
many resources. In contrast, machine learning excels in accuracy but requires much data and higher computing power. Therefore, the
selection of methods should be tailored to specific needs, data availability, and computational capacity to provide optimal prediction
results for the RUL of the transformer.

Conclusion

The conclusion of this research shows that mimicking the human ability to recognise objects with only a few trials faced with a
small amount of data and low computational power has become a challenge for machine learning techniques. KGS has advantages for
systems that require real-time adaptation without relying on previously collected historical data. This method allows the system to
learn directly from its operating environment, making it more flexible in dealing with changing conditions. When predicting the RUL
of a transformer, KGS can consider various factors such as ambient temperature, oil insulation quality, load, insulation resistance, and
grounding resistance that dynamically affect the useful life of the transformer. The analysis of this method shows that the transformer
is still in good condition, with a health level of 87.5 % in the first semester (S1) and about 75 % in the second semester (S2). It can
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be said that with only a few interactions with a small computational power, KGS can present itself as a fast object recogniser. By
using the comparison method, BPNN method with machine learning approach, there are different parameters in temperature and load
variations, the transformer can still operate efficiently with an estimated RUL of about 24.98 years in 2023. The main advantage of
KGS is its ability to continuously adjust predictions based on current conditions, making it a more adaptive method than approaches
based on historical data. If we look at it from a comprehensive perspective, the comparison of KGS and machine learning can mimic
the development of knowledge or knowledge generation in the human brain, learning through interaction and learning through past
data or experience.
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